Séminaires

De MIAT INRA
Aller à : navigation, rechercher

Séminaires de l'unité MIAT :

Pyrenees-morning.jpg

Le séminaire de l'équipe MIAT de l'INRA de Toulouse est un endroit d'échanges scientifiques et techniques entre les membre de l'unité et des experts en mathématiques, informatique, agro-écosystèmes, bioinformatique, etc. Les présentations peuvent être sur des travaux en cours, des projets finalisés hautement spécialisés ou à valeur plus éducative / informationnelle. Les aspects mis en avant peuvent être d'ordre méthodologique ou applicatif. Les annonces de séminaires pertinents sont relayés sur les listes de diffusion de la plateforme biostatistique de l'IMT (contact S. Déjean) ou ROAD-T (Recherche Opérationnelle et Aide à la Décision à Toulouse, contact M. Mongeau).

Les présentations peuvent être en français ou en anglais pour une durée d'une heure (45min + questions). Sauf contre-indication, les séminaires ont lieu dans la salle de réunion MIAT à 10h30 le vendredi. L'accès à l'unité MIAT de l'INRA Auzeville/Castanet est indiqué ici (nous sommes à moins de 30 mètres de la réception !).


Séminaires de l'année en cours et séminaires futurs  :

Pas de séminaire du 23 décembre au 5 janvier (vacances scolaires).

Pas de séminaire le 15 décembre : soutenance de thèse de Jérôme Mariette. (informations à venir)

  • 8/12/2017 : Titre et intervenant à venir
  • 1/12/2017 : Titre et intervenant à venir
  • 24/11/2017 : Titre et intervenant à venir
  • 17/11/2017 : Titre à venir Andres Legarra-Albizu (GenPhySE, INRA, Toulouse)
  • 10/11/2017 : Titre et intervenant à venir

Pas de séminaire les 27 octobre et 3 novembre (vacances scolaires).

  • 20/10/2017 : Sensibilité des peupliers à la flexion : Analyse transcriptomique et inférence de réseau de gènes Lise Pomies (MIAT)
Résumé : à venir

pas de séminaire le 13/10 pour cause d'invité le 09/10

  • 09/10/2017 : Overview of first-order optimization methods for the LP relaxation of the Weighted CSP Problems: classification, experience, comparison Bogdan Savchynskyy and Stefan Haller (Heidelberg University, Allemagne)
Résumé : We will review a majority of existing solvers for the local polytope relaxation of the weighted constraint satisfaction problem. The problem is also known as maximum a posteriori/maximum probable explanation inference in undirected graphical models. The relaxation is often referred to as "linear programming (LP) relaxation". We will consider several dual formulations of the relaxation and treat them as unconstrained large-scale concave problems. The core of our talk is a comparison of approximate solvers for this problem. These solvers are based on subgradient, proximal point, smoothing and block-coordinate descent techniques. Based on the comparison, we will conclude about key properties of an "ideal" (so far non-existing) solver.

Pas de séminaire le 6 octobre (journée RECORD).

  • 29/09/2017 : Vers une prévision des incertitudes en météorologie Laure Raynaud (Météo France)
Résumé : Malgré les progrès réguliers des prévisions météorologiques, celles-ci demeurent imparfaites et, surtout, incertaines. Ces erreurs de prévision combinent de façon indissociable les imperfections des observations, d'autres de la modélisation, qui peuvent faire l’objet d'améliorations sans pouvoir être totalement supprimées. C'est pourquoi on affiche parfois une confiance limitée dans les prévisions annoncées : les prévisions sont incertaines et l'intérêt pour quantifier cette incertitude ne cesse de grandir. Pour ce faire, le recours à des techniques de prévision probabiliste s'impose. Après quelques quelques rappels autour de la notion de prévisibilité de l'atmosphère, on présentera les méthodes probabilistes mises en oeuvre quotidiennement dans les centres de prévision opérationnels, ainsi que l'information utile que les utilisateurs peuvent en retirer.
  • 22/09/2017 : Annotating long non-coding RNAs in model and non-model organisms using a Random Forest strategy Valentin Wucher (CRG, Barcelone, Espagne)
Résumé : Le séquençage du transcriptome (RNA-seq) est devenu un standard pour identifier et caractériser les différentes populations d'ARN. Néanmoins, l'une des principales difficultés consiste à pouvoir classer les nouveaux transcrits et notamment différencier les ARN qui seront traduits en protéines (ARNm/mRNA) des ARN longs non-codants (ARNlnc/lncRNA). Dans ce but, nous avons développé FEELnc (FlExible Extraction of LncRNAs), un programme ne nécessitant pas d'alignements de séquences (alignment-free) et qui permet d'annoter les ARNlnc via une stratégie Random Forest basée/entraînée sur les fréquences de multiples k-mer et une définition d'ORF relâchée. Comparées avec 5 autres méthodes, les performances de FEELnc montrent des résultats similaires ou meilleurs sur des jeux de données connus de lncRNA/mRNAs issus de l'annotation de référence GENCODE (homme et souris) et NONCODE (base de données d'ARNlnc chez des espèces non-modèles). FEELnc automatise aussi l'annotation des ARNlnc en sous-classes distinctes (génique et intergéniques) et permet d'identifier des ARNlnc même sans séquences d'ARN longs non-codants en apprentissage, ce qui permet son utilisation pour des espèces non-modèles. FEELnc a été utilisé chez 3 espèces non-modèles : le chien, le poulet et l'algue (Ectocarpus), permettant l'identification de plusieurs ARNlnc.
  • 15/09/2017 : Mesures de dépendance et échantillonnage Monte-Carlo multi-niveaux pour la quantification d'incertitudes et l'analyse de sensibilité Matthias De Lozzo (CERFACS Toulouse) diaporama
Résumé : Les outils de quantification d'incertitudes et d'analyse de sensibilité permettent d'étudier l'impact des paramètres incertains d'un simulateur numérique sur sa sortie (moments centraux, quantiles, probabilités de dépassement de seuil, parts de variabilité de la sortie imputables aux différents paramètres, etc.). Requérant un nombre important d'évaluations du simulateur, il est courant de remplacer ce dernier par un modèle de substitution (krigeage, chaos polynomial, ...). Néanmoins, une erreur de métamodèle vient dans ce cas s'ajouter à celle d'échantillonnage. Pour palier ceci, cet exposé présente deux types de travaux récents et en cours se passant de métémodèle. Un premier consiste à remplacer les indices de sensibilité usuels par des nouveaux basés sur des mesures de dépendance s'appuyant sur la théorie des RKHS et moins gourmand en simulations. Un second vise à remplacer les méthodes d'échantillonnage de type Monte-Carlo par des méthodes d'échantillonnage de type Monte-Carlo multi-niveaux faisant appel à des évaluations de versions dégradées et plus rapides du simulateur. Ces travaux sont appliquées à des problématiques de sciences de l'environnement.
Résumé : Integrating the increasing number of available multi-omics cancer data remains one of the main challenges to improve our understanding of cancer. Our approach is based on AMARETTO, an algorithm that integrates DNA methylation, DNA copy number and gene expression data to identify cancer driver genes and associates them to modules of co-expressed genes. We then propose a pancancer version of AMARETTO by connecting all modules in pancancer communities. This leads to the identification of major oncogenic pathways and master regulators involved in different cancers.

Séminaires passés / Past seminars  :

Lien vers la Liste des séminaires passés de l'unité MIAT.

Contacts:

Si vous souhaitez présentez vos travaux durant le séminaire MIAT, n'hésitez pas à contacter Victor Picheny ou Nathalie Villa-Vialaneix.

Génotoul BioInfo
Équipe RECORD
IMABS
Outils personnels