E. Pauwels
joint work with A. Beck and S. Sabach.

Séminaire MIAT INRA
September 23 2016
Two old ideas have received renewed attention in the past years:

Block decomposition:

\[
x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}
\]

Linear oracles:

\[
\min_{x \in X} \langle x, c \rangle
\]
Two old ideas have received renewed attention in the past years:

Block decomposition:

\[
\mathbf{x} = \begin{pmatrix}
 \mathbf{x}_1 \\
 \\
 \\
 \mathbf{x}_N
\end{pmatrix}
\]

Linear oracles:

\[
\min_{\mathbf{x} \in X} \langle \mathbf{x}, \mathbf{c} \rangle
\]

Coordinate descent:

- Large dimension
- Distributed data

Conditional gradient:

- “Complex constraints”
- Primal-dual interpretation
Two old ideas have received renewed attention in the past years:

Block decomposition:

\[
\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}
\]

Linear oracles:

\[
\min_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{c} \rangle
\]

Coordinate descent:
- Large dimension
- Distributed data

Conditional gradient:
- “Complex constraints”
- Primal-dual interpretation

Theoretical properties and empirical performances?
Scope of the presentation

- Most results in the literature hold for random block selection rules.
- Lacoste-Julien and co-authors analyzed the random block conditional gradient method (RBCG).
 - *Block-Coordinate Frank-Wolfe Optimization for Structural SVMs* (ICML 2013)
- We propose a convergence analysis for the cyclic block variant (CBCG).
Most results in the literature hold for random block selection rules.
Lacoste-Julien and co-authors analyzed the random block conditional gradient method (RBCG).

- *Block-Coordinate Frank-Wolfe Optimization for Structural SVMs* (ICML 2013)

We propose a convergence analysis for the cyclic block variant (CBCG).

This presentation: focus on machine learning related aspects
- General introduction to linear oracle based optimization methods.
- Specification to (regularized) empirical risk minimization (ERM).
- Details about the application to structured SVM.

(Taskar et. al., 2003 – Tsochantaridis et. al., 2005)
Outline

1. Context

2. Conditional Gradient algorithm

3. CG and convex duality

4. Block CG and L_2 regularized ERM

5. Results
Main idea

Optimization setting: \(f : \mathbb{R}^n \to \mathbb{R} \) is convex, \(C_1 \) with \(L \)-Lipschitz gradient over \(X \subseteq \mathbb{R}^n \) which is convex and compact.

\[
\bar{f} := \min_{x \in X} f(x)
\]
Main idea

Optimization setting: $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is convex, C_1 with L-Lipschitz gradient over $X \subset \mathbb{R}^n$ which is convex and compact.

$$\bar{f} := \min_{x \in X} f(x)$$

Start with $x^0 \in X$

$$p^k \in \arg\max_{y \in X} \langle \nabla f(x^k), x^k - y \rangle$$

$$x^{k+1} = (1 - \alpha^k)x^k + \alpha^k p^k \quad 0 \leq \alpha^k \leq 1$$
Main idea

Optimization setting: \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex, \(C_1 \) with \(L \)-Lipschitz gradient over \(X \subset \mathbb{R}^n \) which is convex and compact.

\[
\bar{f} := \min_{x \in X} f(x)
\]

Start with \(x^0 \in X \)

\[
p^k \in \arg\max_{y \in X} \langle \nabla f(x^k), x^k - y \rangle
\]

\[
x^{k+1} = (1 - \alpha^k)x^k + \alpha^k p^k \quad 0 \leq \alpha^k \leq 1
\]

Step size:

- \(\alpha^k = \frac{2}{k+2} \) \hspace{2cm} \text{Open loop}
- \(x^{k+1} = \arg\min_{y \in [x^k, p^k]} f(y) \) \hspace{2cm} \text{Exact line search}
- \(x^{k+1} = \arg\min_{y \in [x^k, p^k]} Q(x^k, y) \) \hspace{2cm} \text{Approximate line search}

\[
f(y) \leq Q(x, y) := f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2
\]

(tangent quadratic upper bound, descent Lemma).
Historical remarks

Fifty years ago:

- First appearance for quadratic programs (Frank, Wolfe, 1956).
- $f(x^k) - \bar{f} = O(1/k)$ (Polyak, Dunn, Dem’Yanov . . . , 60’s).
- For any $\epsilon > 0$, it cannot be $O(1/k^{1+\epsilon})$ (Canon, Cullum, Polyak, 60’s).

Recent developments (illustrations follow):

- Revival for large scale problems.
- Primal dual interpretation (Bach 2015) and convergence analysis (Jaggi 2013)
- Block decomposition variants (Lacoste-Julien et al. 2013)
Historical remarks

Fifty years ago:

- First appearance for quadratic programs (Frank, Wolfe, 1956).
- $f(x^k) - \bar{f} = O(1/k)$ (Polyak, Dunn, Dem’Yanov . . . , 60’s).
- For any $\epsilon > 0$, it cannot be $O(1/k^{1+\epsilon})$ (Canon, Cullum, Polyak, 60’s).

Recent developments (illustrations follow):

- Revival for large scale problems.
- Primal dual interpretation (Bach 2015) and convergence analysis (Jaggi 2013)
- Block decomposition variants (Lacoste-Julien et al. 2013)
Why is it interesting?

- $O(1/k^2)$ can be achieved by using projections (Beck, Teboulle 2009).
- Conditional Gradient does not compete in practice.
Why is it interesting?

- $O(1/k^2)$ can be achieved by using projections (Beck, Teboulle 2009).
- Conditional Gradient does not compete in practice.

In some situations, projection does not constitute a practical alternative. Linear programs on convex sets attain their value at extreme points.
Why is it interesting?

- $O(1/k^2)$ can be achieved by using projections (Beck, Teboulle 2009).
- Conditional Gradient does not compete in practice.

In some situations, projection does not constitute a practical alternative. Linear programs on convex sets attain their value at extreme points.

Trace norm:
For $M \in \mathbb{R}^{m \times n}$, $\|M\|_* = \sum_i \sigma_i$, where $\{\sigma_i\}$ is the set of singular values of M.

- Projection on the trace norm ball is a thresholding of singular values \rightarrow full SVD.
- Linear programming on the trace norm ball is finding the largest singular value \rightarrow leading singular vector.
Outline

1. Context

2. Conditional Gradient algorithm

3. CG and convex duality

4. Block CG and L_2 regularized ERM

5. Results
Recall that X is convex and compact. Define its support function $g: \mathbb{R}^n \to \mathbb{R}^n$

$$g: \mathbf{w} \to \max_{\mathbf{x} \in X} \langle \mathbf{x}, \mathbf{w} \rangle$$
Recall that X is convex and compact. Define its support function $g : \mathbb{R}^n \to \mathbb{R}^n$

$$g : \mathbf{w} \to \max_{\mathbf{x} \in X} \langle \mathbf{x}, \mathbf{w} \rangle$$

Given $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, consider the problems

$$\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \| \mathbf{w} \|^2 + g(-A\mathbf{w} + b) \quad (= P(\mathbf{w}))$$

$$\bar{d} = \min_{\mathbf{x} \in X} \frac{1}{2} \| A^T \mathbf{x} \|^2 - \langle \mathbf{x}, \mathbf{b} \rangle \quad (= D(\mathbf{x}))$$
Convex duality

Recall that X is convex and compact. Define its support function $g : \mathbb{R}^n \to \mathbb{R}^n$

$$g : \mathbf{w} \mapsto \max_{\mathbf{x} \in X} \langle \mathbf{x}, \mathbf{w} \rangle$$

Given $A \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^n$, consider the problems

$$\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \| \mathbf{w} \|_2^2 + g(-A \mathbf{w} + b) \quad (= P(\mathbf{w}))$$

$$\bar{d} = \min_{\mathbf{x} \in X} \frac{1}{2} \| A^T \mathbf{x} \|_2^2 - \langle \mathbf{x}, b \rangle \quad (= D(\mathbf{x}))$$

- Weak duality: for any $\mathbf{w} \in \mathbb{R}^m$ and $\mathbf{x} \in X$,
 $$P(\mathbf{w}) + D(\mathbf{x}) \geq 0$$

- Strong duality holds
 $$\bar{p} + \bar{d} = 0$$
Primal subgradient and dual conditional gradient

\[g: \mathbf{w} \rightarrow \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{w} \rangle \]
\[(\mathbf{x} \in \arg\max \iff \mathbf{x} \in \partial g(\mathbf{w})) \]

\[\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \| \mathbf{w} \|_2^2 + g(-A\mathbf{w} + \mathbf{b}) \]
\[(= P(\mathbf{w})) \]

\[\bar{d} = \min_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} \| A^T \mathbf{x} \|_2^2 - \langle \mathbf{x}, \mathbf{b} \rangle \]
\[(= D(\mathbf{x})) \]
Primal subgradient and dual conditional gradient

\[g : \mathbf{w} \rightarrow \max_{x \in X} \langle x, \mathbf{w} \rangle \quad (x \in \text{argmax} \iff x \in \partial g(\mathbf{w})) \]

\[\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \| \mathbf{w} \|^2_2 + g(-A\mathbf{w} + \mathbf{b}) \quad (= P(\mathbf{w})) \]

\[\bar{d} = \min_{x \in X} \frac{1}{2} \| A^T x \|^2_2 - \langle x, \mathbf{b} \rangle \quad (= D(x)) \]

A conditional gradient step in the dual:

\[p^k : \max_{y \in X} \langle A A^T x^k - \mathbf{b}, x^k - y \rangle = \| A^T x^k \|^2_2 - \langle \mathbf{b}, x^k \rangle + g(-A A^T x^k + \mathbf{b}) \]

\[= P(A^T x^k) + D(x^k) \]
Primal subgradient and dual conditional gradient

\[g: \mathbf{w} \rightarrow \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{w} \rangle \quad (\mathbf{x} \in \arg\max \Leftrightarrow \mathbf{x} \in \partial g(\mathbf{w})) \]

\[\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2} \|\mathbf{w}\|_2^2 + g(-A\mathbf{w} + \mathbf{b}) \quad (= P(\mathbf{w})) \]

\[\bar{d} = \min_{\mathbf{x} \in \mathcal{X}} \frac{1}{2} \|A^T \mathbf{x}\|_2^2 - \langle \mathbf{x}, \mathbf{b} \rangle \quad (= D(\mathbf{x})) \]

A conditional gradient step in the dual:

\[p^k: \max_{\mathbf{y} \in \mathcal{X}} \langle A A^T \mathbf{x}^k - \mathbf{b}, \mathbf{x}^k - \mathbf{y} \rangle = \|A^T \mathbf{x}^k\|_2^2 - \langle \mathbf{b}, \mathbf{x}^k \rangle + g(-A A^T \mathbf{x}^k + \mathbf{b}) \]

\[= P(A^T \mathbf{x}^k) + D(\mathbf{x}^k) \]

Consider the primal variable \(\mathbf{w}^k = A^T \mathbf{x}^k \): we have \(p^k \in \partial g(-A\mathbf{w}^k + \mathbf{b}) \).

\[\mathbf{w}^{k+1} - \mathbf{w}^k = \alpha^k A^T (\mathbf{x}^k + p^k) = -\alpha^k \partial P(\mathbf{w}^k) \]
Primal subgradient and dual conditional gradient

\[g: \mathbf{w} \rightarrow \max_{\mathbf{x} \in \mathcal{X}} \langle \mathbf{x}, \mathbf{w} \rangle \quad (\mathbf{x} \in \text{argmax} \iff \mathbf{x} \in \partial g(\mathbf{w})) \]

\[\bar{p} = \min_{\mathbf{w} \in \mathbb{R}^m} \frac{1}{2}\|\mathbf{w}\|_2^2 + g(-A\mathbf{w} + \mathbf{b}) \quad (= P(\mathbf{w})) \]

\[\bar{d} = \min_{\mathbf{x} \in \mathcal{X}} \frac{1}{2}\|A^T\mathbf{x}\|_2^2 - \langle \mathbf{x}, \mathbf{b} \rangle \quad (= D(\mathbf{x})) \]

A conditional gradient step in the dual:

\[\mathbf{p}^k : \max_{\mathbf{y} \in \mathcal{X}} \langle AA^T\mathbf{x}^k - \mathbf{b}, \mathbf{x}^k - \mathbf{y} \rangle = \|A^T\mathbf{x}^k\|_2^2 - \langle \mathbf{b}, \mathbf{x}^k \rangle + g(-AA^T\mathbf{x}^k + \mathbf{b}) = P(A^T\mathbf{x}^k) + D(\mathbf{x}^k) \]

Consider the primal variable \(\mathbf{w}^k = A^T\mathbf{x}^k \): we have \(\mathbf{p}^k \in \partial g(-A\mathbf{w}^k + \mathbf{b}) \).

\[\mathbf{w}^{k+1} - \mathbf{w}^k = \alpha^k A^T(-\mathbf{x}^k + \mathbf{p}^k) = -\alpha^k \partial P(\mathbf{w}^k) \]

Implicit subgradient steps in the primal!
The primal-dual interpretation holds in much more general settings (Bach 2015).

Primal-dual convergence analysis, \(\min_{i=1,\ldots,k} P(w^i) + D(x^i) = O(1/k) \) (Jaggi 2013).

Automatic step size tuning for subgradient descent in the primal.
Outline

1. Context
2. Conditional Gradient algorithm
3. CG and convex duality
4. Block CG and L_2 regularized ERM
5. Results
Consider a problem of the form:

$$\bar{p} = \min_{w \in \mathbb{R}^m} \frac{\lambda}{2} \|w\|_2^2 + \frac{1}{N} \sum_{i=1}^{N} g(-A_iw + b_i)$$

$$\bar{d} = \min_{x_i \in X, i=1, \ldots, N} \frac{\lambda}{2} \left\| \frac{1}{N\lambda} \sum_{i=1}^{N} A_i^T x_i \right\|_2^2 - \frac{1}{N} \sum_{i=1}^{N} \langle x_i, b_i \rangle$$
Consider a problem of the form:

$$\bar{p} = \min_{w \in \mathbb{R}^m} \frac{\lambda}{2} \|w\|_2^2 + \frac{1}{N} \sum_{i=1}^{N} g(-A_i w + b_i) \quad (= P(w))$$

$$\bar{d} = \min_{x_i \in X, i=1,\ldots,N} \frac{\lambda}{2} \left\| \frac{1}{N} \sum_{i=1}^{N} A_i^T x_i \right\|_2^2 - \frac{1}{N} \sum_{i=1}^{N} \langle x_i, b_i \rangle \quad (= D(x))$$

Binary SVM: dataset \((a_i, l_i) \in \mathbb{R}^m \times \{-1, 1\}, i = 1, \ldots, N\)

$$P(w) = \frac{\lambda}{2} \|w\|_2^2 + \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - l_i a_i^T w)$$

- Prediction: \(l(a, w) = \arg\max_{l \in \{-1, 1\}} l a^T w = \text{sign}(a^T w)\).
- Convex surrogate of the empirical risk: \(\frac{1}{N} \sum_{i=1}^{N} 1(l(a_i, w) = l_i)\)
The dual has a separable block structure: \(\mathbf{x}_i \in \mathcal{X}, i = 1, \ldots, N \). Start with \(\mathbf{x}_i^0 \in \mathcal{X}, i = 1, \ldots, N \), and iterate for \(k \in \mathbb{N} \) and \(i = 1, \ldots, N \)

\[
\mathbf{p}_i^k \in \operatorname{argmax}_{y \in \mathcal{X}} \langle \nabla_{\mathbf{x}_i} D(\mathbf{x}_i^k), \mathbf{x}_i^k - y \rangle
\]

\[
\mathbf{x}_{i}^{k+1} = (1 - \alpha_i^k) \mathbf{x}_i^k + \alpha_i^k \mathbf{p}_i^k \\
0 \leq \alpha_i^k \leq 1
\]
The dual has a separable block structure: \(x_i \in X, i = 1, \ldots, N \). Start with \(x_0 \in X, i = 1, \ldots, N \), and iterate for \(k \in \mathbb{N} \) and \(i = 1, \ldots, N \)

\[
\begin{align*}
\mathbf{p}_i^k & \in \arg\max_{y \in X} \langle \nabla_{x_i} D(x^k), x_i^k - y \rangle \\
x_i^{k+1} & = (1 - \alpha_i^k) x_i^k + \alpha_i^k \mathbf{p}_i^k \quad 0 \leq \alpha_i^k \leq 1
\end{align*}
\]

Mainly three way to choose blocks:

- Uniformly at random (Lacoste-Julien et al. 2013).
- Cyclic (Beck et al. 2015).
- Essentially cyclic, “random permutation” (Beck et al. 2015).

Primal interpretation: a subgradient method (stochastic, cyclic, etc . . .).

\[
\mathbf{p}_i^k \in \partial g (-A_i \mathbf{w}_i^k + \mathbf{b}_i)
\]
<table>
<thead>
<tr>
<th>a (1)</th>
<th>b (2)</th>
<th>u (3)</th>
<th>l (4)</th>
<th>o (5)</th>
<th>u (6)</th>
<th>s (7)</th>
<th>l (8)</th>
<th>y (9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>!</td>
</tr>
</tbody>
</table>
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in A \times L, i = 1, \ldots, N\). \(L\) is discrete and structured:

- Feature function: \(\phi: A \times L \rightarrow \mathbb{R}^m \)
- Prediction \(l(a, w) = \arg\max_{l \in L} \langle w, \phi(a, l) \rangle \)
- Risk function \(\Delta: L^2 \rightarrow \mathbb{R}_+ \).
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in A \times L, i = 1, \ldots, N\). \(L\) is discrete and structured:

- Feature function: \(\phi: A \times L \rightarrow \mathbb{R}^m\)
- Prediction \(l(a, w) = \arg\max_{l \in L} \langle w, \phi(a, l) \rangle\)
- Risk function \(\Delta: L^2 \rightarrow \mathbb{R}_+\).

Binary SVM:

- \(L = \{-1, 1\}\).
- \(\phi(a, l) = la\).
- \(\Delta\) is the 0−1 loss
- Prediction is a sign (optimize over a set of size 2)
- The dual constraint set is a box (product of segments).
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in \mathcal{A} \times \mathcal{L}, i = 1, \ldots, N\). \(\mathcal{L}\) is discrete and structured:

- Feature function: \(\phi: \mathcal{A} \times \mathcal{L} \to \mathbb{R}^m\)
- Prediction \(\hat{l}(a, w) = \arg\max_{l \in \mathcal{L}} \langle w, \phi(a, l) \rangle\)
- Risk function \(\Delta: \mathcal{L}^2 \to \mathbb{R}_+\).

Label sequence learning:

- \(\mathcal{L}\) is the set of possible words over an alphabet.
- \(\phi\) is inspired by HMM (unary and binary terms over a chain)
- \(\Delta\) is the Hamming distance.
- Prediction (or decoding) is done by dynamic programming (Viterbi algorithm).
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in A \times L, i = 1, \ldots, N\). \(L\) is discrete and structured:

- Feature function: \(\phi: A \times L \rightarrow \mathbb{R}^m\)
- Prediction \(l(a, w) = \arg\max_{l \in L} \langle w, \phi(a, l) \rangle\)
- Risk function \(\Delta: L^2 \rightarrow \mathbb{R}_+\).

Empirical risk: \(w \rightarrow \sum_{i=1}^{N} \Delta(l_i, l(a_i, w))\).

Label sequence learning:

- \(L\) is the set of possible words over an alphabet.
- \(\phi\) is inspired by HMM (unary and binary terms over a chain)
- \(\Delta\) is the Hamming distance.
- Prediction (or decoding) is done by dynamic programming (Viterbi algorithm).
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in A \times L, i = 1, \ldots, N\). \(L\) is discrete and structured:

- Feature function: \(\phi: A \times L \to \mathbb{R}^m\)
- Prediction \(l(a, w) = \arg \max_{l \in L} \langle w, \phi(a, l) \rangle\)
- Risk function \(\Delta: L^2 \to \mathbb{R}_+\).

Convex relaxation: \(w \to \sum_{i=1}^{N} \max_{l \in L} \{ \Delta(l_i, l) - \langle w, \phi(a_i, l) - \phi(a_i, l_i) \rangle \} \).

Label sequence learning:

- \(L\) is the set of possible words over an alphabet.
- \(\phi\) is inspired by HMM (unary and binary terms over a chain)
- \(\Delta\) is the Hamming distance.
- Prediction (or decoding) is done by dynamic programming (Viterbi algorithm).
Structured output learning and structured SVM

Dataset: \((a_i, l_i) \in A \times L, i = 1, \ldots, N\). \(L\) is discrete and structured:

- Feature function: \(\phi: A \times L \rightarrow \mathbb{R}^m\)
- Prediction \(l(a, w) = \arg\max_{l \in L} \langle w, \phi(a, l) \rangle\)
- Risk function \(\Delta: L^2 \rightarrow \mathbb{R}_+\).

Structured SVM:
\[
\min_{w \in \mathbb{R}^m} \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^{N} \max_{l \in L} \left\{ \Delta(l_i, l) - \langle w, \phi(a_i, l) - \phi(a_i, l_i) \rangle \right\}
\]

Label sequence learning:

- \(L\) is the set of possible words over an alphabet.
- \(\phi\) is inspired by HMM (unary and binary terms over a chain)
- \(\Delta\) is the Hamming distance.
- Prediction (or decoding) is done by dynamic programming (Viterbi algorithm).
- The dual constraint set is a product of simplices (of size \(|L|\)).
1. Context

2. Conditional Gradient algorithm

3. CG and convex duality

4. Block CG and L_2 regularized ERM

5. Results
Convergence rates

- \(\tilde{k} \): number of effective passes through the \(N \) blocks.
- The rates are given for the duality gap.
- \(B \): diameter of the dual constraint set \(X \times X \times \ldots \times X \).
- \(L \): Lipschitz modulus of \(\nabla D \).

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).

Cyclic block: deterministic rate (Beck et al. 2015).

Approximate line search:

\[
O \left(\frac{1}{\tilde{k}} (L B^2 + D(x_0)) \right)
\]

Open loop (\(\alpha \tilde{k} = 2\tilde{k} + 2 \)):

\[
O \left(\frac{1}{\tilde{k}} LB^2 \sqrt{N} \right)
\]

where \(\beta \) is the smallest block Lipschitz modulus of \(\nabla D \) (variations constrained to a single block).
Convergence rates

- \tilde{k}: number of effective passes through the N blocks.
- The rates are given for the duality gap.
- B: diameter of the dual constraint set $X \times X \times \ldots \times X$.
- L: Lipschitz modulus of ∇D.

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).

$$O \left(\frac{1}{\tilde{k}} (LB^2 + D(x^0)) \right)$$
Convergence rates

- \(\tilde{k} \): number of effective passes through the \(N \) blocks.
- The rates are given for the duality gap.
- \(B \): diameter of the dual constraint set \(X \times X \times \ldots \times X \).
- \(L \): Lipschitz modulus of \(\nabla D \).

Random block: the rate relates to an expectation (Lacoste-Julien et al. 2013).

\[
O \left(\frac{1}{\tilde{k}} (LB^2 + D(x^0)) \right)
\]

Cyclic block: deterministic rate (Beck et al. 2015).

- Approximate line search: \(O \left(\frac{1}{\tilde{k}} LB^2 \frac{L}{N} \right) \)
- Open loop \(\left(\alpha_i^{\tilde{k}} = \frac{2}{\tilde{k} + 2} \right) \): \(O \left(\frac{1}{\tilde{k}} LB^2 \sqrt{N} \right) \)

where \(\beta \) is the smallest block Lipschitz modulus of \(\nabla D \) (variations constrained to a single blocks).
Results on synthetic problems

1000 random QP over the unit cube in \mathbb{R}^{100} (normalized).

- Predefined step
- Backtracking
- Exact line-search

k f

type
- CBCG–P
- CBCG–C
- RBCG
- CG
Results on structural SVM

Handwritten words recognition.

![Graph showing different values of λ and their impact on gap](image)
Conclusion regarding cyclic block selection rule

- One of the few attempts to analyse essentially cyclic methods.
- Huge gap compared to random selection.
- Efficient in practice.

Future directions:

- Gap between theory and practice
- Linear convergence
- Exact line search, inexact oracles
General conclusion

- Nice duality between constraint block decomposition and sequential methods for sums.
- Conditional gradient is “bad”, but it is good in settings for which nothing else is affordable.